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1. THE SPACE OF POLYTOPES

Polytopes are closely related to two other families of subsets
of Euclidean space, namely finite subsets and affine planes. We explore
this relationship and construct a natural topology for each of the first
two families. The basic equivalence relation of similarity and its

interpretation in terms of transformation groups are also discussed.

1. Euclidean space
For any positive integer n , Euclidean n-space will be

. . n .
denoted by E® . It is convenient to represent E as a fixed sub-

space of g+l , and we do this by identifying x ¢ E° with Y ¢ g+l ,
where ¥; =% for 1 gi ¢n and Va1 = 0 . Likewise, we consider
the space E of all infinite sequences x = (Xi) = (Xl"" s Kopees )

of real numbers x. in which X = 0 for all but finitely many values
of 1, and we embed £ in E by identifying x ¢ EY with z ¢ E ,

where z, = X for 1 £1 g<n and z; = 0 for i >n . In this way

we obtain a sequence of inclusions
plopRc.  cifacra...

and we can write E = UJ E" = lim M.
n=1 >

The space E has a real linear structure given by
)\(Xi) + U(Yi) = (Zi) s

where z, = Axi oy, i=1l,... ,0y... 5, for AyueR, x = (Xi) R

y = (yi) € E . The metrical structure of E 1s determined by the
familiar Euclidean inner product < , > , where <x,y> = Iio1 ¥Y;
for all x,y € E . The associated norm || || and Euclidean metric d
are then given by |lx | = /<x,x> and d(x,y) = |z - y | respectively.

The resulting metric space (E,d) , which we denote simply by

E , 1is called Euclidean space. The fact that E is not complete will

cause us no trouble, since we are interested only in subsets of E that
lie in some E . Our only reason for introducing E 1is to be able to

handle all the spaces E"  at once.



2. Affine hulls of finite sets

let “F denote the family of all finite subsets of E . We
denote the number of elements in A e F by #A (and extend this
notation to finite sets in general in Chapter 2). Thus H¢ =0 and
HAa=1 iff A is a singleton {a} , aecE .

If Ae"¥, then any linear combination I t,a for which

aeA

T =1 1is called an affine combination of A . The set of all

aeAta
affine combinations of A is called the affine hull aff A of A, and

any such subset X = affA of E 1is called an affine plane generated
by A . More generally, for any subset S of E , affS denotes the
union of the affine planes affA , where A e} and ACS .

Let o denote the set of all affine planes of the form
affA, AeF. Then aff:F->sk is a surjective map. For example,
affA = A iff A=¢ or A 1is a singleton {a} . Of course it may
happen that affA = affB for distinct sets A, Be F . If affA =X
and for every proper subset S of A, aff § 1is a proper subset of

X, then A 1is said to be affinely independent and to be an affine

basis for X.

The set J5 of all finite-dimensional linear subspaces of E
is a subset of St with inclusion 1:5-, say. For convenience, we
give @ ‘'honorary membership' of & , assigning to it the dimension
-1 . There is then a parallel projection p:s#-+2 given by p(X) =1L ,
where L = {x-y:x,y ¢ X} . Trivially, por = lg « We say that
X, Y ¢ & are parallel, written X HY , 1ff PX)C P() or
F(Y)YCP(X)

The dimension dim L of any L e X is well-defined, and we
extend this notion to the elements of & by putting dim X = dim P(X)
for each X e . We say that X ¢ & is an affine k—plane iff
dim X = k .

Exercise: Let Ae P and X = affA . Then HA > 1 + dimX with
equality iff A is affinely independent.

Exercise: Let A e¢“J . Then ACE" for some n . Hence affACE" .
Thus if '}n and ‘An denote the sets of all finite subsets and of all
affine planes in E® , respectively, then F =U . F and

nxl " n
‘ﬁ=Unzl‘*n :



3. Lattice structure

Both F and J& inherit the partial order by inclusion from
the set ZE of all subsets of E , and both are lattices with respect
to this partial order. In F , the least upper bound and greatest
lower bound of A,B ¢ 3 are AU B and A B respectively. In Sk ,
we denote the least upper bound of X and Y by XYY, while the
greatest lower bound of X, Y ¢ B is just XM Y . The fact is that
XUY=XYY iff XCY or YDOX, since XYY 1is the intersection
of all affine planes that contain X U Y .
Exercise: Let A,B ¢ " and X = affA, Y = affB . Then ACB = XCY,
aff(AUB) = XYY, and aff(ANBC XNY . Find A, B such that
the last inclusion is proper.
Exercise: For all L,Med,, LUM=L+ M, For all X,Y e,
pXYY) = pX) +p(Y) and pENYVCTpE N p(Y) .

4, Polytopes

Let A €7#. Any affine combination such that, for

z t a
agA a
all a e A, t, 20 is called a convex combination of A , and the

set of all convex combinations of A 1is called the convex hull conv A

of A . Any subset P = conv A, where A ¢ '} , 1s called a convex
polytope or simply a polytope. We denote the set of all polytopes by ®.

It follows at once from the definitions that for all A ¢ ¥,

AC conv A CaffA = aff(convA) .

If P = convA ¢, then P is said to be of dimension dimP =
dim(affA) , and we refer to P as an n-polytope iff n = dimP.

The empty set @ 1is the unique (~1)-polytope. The
O-polytopes are the singleton subsets of E , and l-polytopes are closed
bounded straight line-segments. A 2-polytope is called a polygon and a
3-polytope is called a polyhedron.

Notice that if A, B ¢ '3 and AC B, then conv A Cconv B
A more subtle fact is that if conv A = conv B =P , then P =
conv(A N B) . It follows that for each polytope P there is a unique
set V ¢ ¥ such that P = conv V and for every proper subset W of V,
conv W 1is a proper subset of P . Thus V is the 'smallest' subset of

E whose convex hull is P . The elements of V are called the vertices



of P, and V 1is called the vertex set vert P of P . The rela-

tionship between vert and conv 1is shown in the commutative diagram

=,
ver/‘ \n

e — @
e

Thus vert 1is injective and conv 1is surjective.

It follows from the first Exercise of §2 that an n-polytope P
has at least n + 1 vertices, and has exactly n + 1 vertices 1ff
vert P is affinely independent. Another way of putting this is to say
that an n-polytope P has exactly n + 1 wvertices 1iff these vertices
are 'in general position' in E . Such an n-polytope is called an n-
simplex. Of course for -1 £ n £ 1, every n-polytope is an n-simplex.
A 2-simplex is called a triangle and a 3-simplex is called a tetrahedron,
for reasons that either are familiar already or will become clear
shortly.

With the second Exercise of §2 in mind, we note that for each
P ¢ ® there is a positive integer m such that PC E™ . Trivially,

m > dim P . We denote the set of all polytopes in jou by G)m and note
that ® =Un21(Pm .
5. The Hausdorff metric

There is a well-known procedure, due to Hausdorff [Kelley,
1942; Grinbaum, 1967], that can be used here to topologise both F and
® in a natural way. We describe this first in the general context of
metric spaces.

Let (M,8) be a metric space, and let 4 (M) denote the set
of all nonempty compact subsets of M . The Hausdorff metric h on

L) is defined as follows. Let S, T e (M) . Then

h(S,T) = max{i,u} ,

where A = max min §(x,y) and u = max min §(xX,y) . As an illustratiom,
xeS yeT yeT xeS

let M =E?, & = d|E2 and let S and T be closed circular discs



with centres (-a,0), (a,0) and radii r, R respectively, where
O<r<R<2a<r+R. Then x=r+2a~-R and py =R + 2a -1
Hence in this case h(S,T) = u , as may be seen readily by reference to
Figure 1. It may be shown that h 1is a complete metric on (é(M) , and
that every closed bounded subset of 4&(M) is compact.

The definition is little more than a formal expression of the
commonsense idea that two nonempty compact subsets S and T of M
are, in an intuitive sense, 'close' to one another iff each point of §
is close to some point of T , and each point of T 1is close to some

point of S .

Figure 1. BHausdorff distance




6. The space of polytopes

Let us apply the above construction to the case in which
M,8) = (E,h) . This yields a complete metric h on the set G(E) =4
of all nonempty compact subsets of E . 1If, therefore, we put
4'=F¥NL =">\{g}, and P’ = PNl =CP\{p) , then F' and ®P' are
subsets of & , and we may give them the induced metrics h? and h@
respectively and hence the corresponding metric topologies. To each
space }' and P' we append @ = {@#} as a singleton connected
component, and so both ‘¥ and ® have been topologised.

It is easy to show that each of “# and (P has just two path-
components. That is to say, both 3' and P' are path-connected. For
example, let A, B e with A =1r and 3FB=s . Let CePF be
any set such that # C = rs . Choose any labellings a1y000 s @, €A,
bl"" N bS € B, €112C129¢++ 5 Cpg € C for the elements of A , B
and C . For each pair (i,3) (i=1,... ,r; j =1,... ,s) define a
path ozij:I - E by aij(t) = ta; + (l—t)c_j_j , and let o:I -F be
given by a(t) = {aij(t):i=l,... ,r; j=l,... ,8} , where I denotes
the closed interval [:0,1]. Then o 1is a continuous path in “#' from
C to A . Likewise there is a path g from C to B and hence a path
Ba—l from A to B in "F' . Figure 2 illustrates various steps along

such a path for r =2, s =3 .

Figure 2. Path-connectedness of "F'

® o . : : . : [ .
A — c — > B



It is natural to ask whether the maps vert and conv are
continuous with respect to the topologies that we have assigned to (P
and F. We observe first that conv is continuous; for if A, B ¢F',
P=convA and Q = conv B, then QéP,Q) < h;A,B) . On the other hand,
vert 1s not continuous. To see this, let us construct a sequence (Pn)
of polytopes Pn that converges in P to P but for which the
corresponding sequence (Vn) , where Vn = vert Pn , does not converge
in % to V = vert P .

Consider the sequence of triangles Pn , Wwhere vert Pn =
{(-1,0), (O,l/n), (1,0)} c:E2 . Then (Pn) ‘converges to the closed
line-segment P = [-1,1] in E' , and so V = {-1,1} = {(-1,0),(1,0)} ,
while (Vn) converges to {(-1,0),(0,0),(1,0)} = {-1,0,1} . Figure 3

may make this a little more obvious.

Figure 3. vert 1is not continuous




7. Similarity and congruence

In Euclid's Elements [Heath 1956], two equivalence relations
between geometrical figures are much in evidence, either implicitlyor
explicitly, particularly in Euclid's treatment of triangles. Both
relations may be defined in an obvious way on the set of subsets of any
metric space, and have the virtue of being definable by means of group
actions. Let us look first, then, at similarity and congruence in metric
spaces.

Let (M,éM) and (N,éN) be metric spaces. A map f:M -+ N
is said to be a similarity iff , for some real number A > O and for

all x, yeM,
Ay (%,y) = 8 (£(x),£(y))

The number ) may be called the modulus of f , and we write

accordingly A = |f| . Let us denote the set of all similarities from
M to N by Qf(M,N) . If f ee/(M,N) and, for some metric space
W60, g edMN,W , then gof cof(,) and |gof| = |g[£] .

Trivially, 1M e (M,M) and we have, it seems, unwittingly constructed a
category of of similarities between metric spaces. In this category gf s
we are interested in the group Au%f M of invertible self-similarities

of (M,8.,) . We call this the similarity group of (M,GM) and we prefer

to denote it by Sim(M,ﬁM) or Sim M .

The map u:Sim M > R, into the multiplicative group R, of
positive real numbers, given by u(f) = [f]| , is a homomorphism whose
kernel is called the isometry group Iso M of M . The elements of
Iso M, called isometries, are the metric-preserving bijections of M

to itself.

Problems: (i) Let D be a subgroup of R, . Find a metric space
(M,éM) such that u(Sim M) =D . (ii) Let A = imp < R, . Character-

ise those metric spaces (M,GM) for which the short exact sequence

1~ Iso M—-Sim M-E>p —o1

splits. Characterise those spaces (M,éM) for which 4 =R, .
The group Sim M acts on the set ZM of all subsets of M
by f-X = {f(x):x ¢ X} , and Iso M also acts on M by restriction

of this action. An orbit of Sim M in M is called a similarity class

of subsets of M , and an orbit of Iso M 1is called a congruence class




of subsets of M . 1In alternative language, if X, Y ¢ ZM , then X 1is
similar to Y , writtem X~ Y , iff Y = f.X for some f ¢ Sim M ,
and X 1is congruent to Y , written X =Y , iff Y = g.-X for some
g e Iso M, Clearly X =Y implies X~ Y , so that congruence is
finer than similarity (and similarity is coarser than congruence).

We have approached these relations by using properties of the
ambient space M as a whole. Another way to proceed is as follows.
For X ¢ ZM , let 6X denote the metric induced on X by restriction
of &y . Then we may choose to define a 'similarity' from (X,GX) to
(Y,SY) to be an gg—isomorphism in the categorical sense discussed above,
and to say that X 1is 'similar' to Y iff such an Qy—isomorphism exists.
If X~ Y, then X 1s certainly 'similar' to Y 1in this new sense.
It may be impossible, however, to extend a given af—isomorphism from
(X,dx) to (Y,éY) to obtain an element f € Sim M , so the two
approaches do not yield the same concept. Analogous remarks apply to
congruence. For more details and references to the background literature,
see Robertson [19761.

In the Euclidean spaces that we are studying here, these
difficulties do not arise: the two approaches to similarity and

congruence lead to the same pair of relations.

8. Euclidean similarity
Let us now consider the case (M,dM) = (En,d) , where d
denotes d]En . We put Sim Et = Sim(n), Iso(En) = Iso(n) , and

observe that y 1s surjective and the sequence
1——»Iso(n)——»Sim(n)JL+R*——+1

splits (see Problems, §7). Thus Sim(n) may be identified with a semi-
direct product of Iso(n) with R, . As a set, therefore, we may
identify Sim(n) with the Cartesian product of the underlying sets of
Iso(n) and R, . The group structure may be established once we know
something about Iso(n) , which itself may be expressed as a semi-direct
product.

Let R" denote real linear n-space, and O(n) the orthogonal
group of real n x n matrices H such that HHt = In s, Where
I, = [aij} is the n x n unit matrix and the superscript denotes

transposition. Then there is a split short exact sequence
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1 —sR" —Iso(n) —0(n) —>1

under which we may identify Iso(n) as a set with the Cartesian product

R" x o(n) , defining a group operation (juxtaposition) by

(a,H) (b,K) = (H-b+a,HK) ,

where . denotes the standard action of O(n) on rRT .
We may then identify Sim(n) with the set R x 0(n) x R, on

which a group operation (again indicated by juxtaposition) is defined by

(a,H,s) (b’K’t) = (SH'b+a,HK,St) .

n

The action of Sim(n) on E is given by

(a,H,s).x = sH.x + a .

The next step is to transfer these ideas from E® to E

n+l

itself. The inclusion E"C E induces a monomorphism of Sim(n)

into Sim(n+l) , sending (a,H,s) ¢ Sim(n) to (a,H',s) ¢ Sim(n+l) ,

. _ (H O
w800

We may construct a group Sim as the direct limit of the resulting

where

sequence of monomorphisms, and we identify Sim with the group con-
structed as follows. Let I, denote the doubly-infinite matrix whose
(i,j)th element is dij , and let Q denote the group of all doubly-

infinite matrices of the form

. B o
Bo= |0 Im} g
where H € 0(n) for some n . Then Sim =E x Q x R, , with the group

operation given by
(a,H,s) (b,K,t) = (sH.b+a,HK,st)

as above, and with (a,ﬁ,s)-x = sH.x+a for x ¢ E .
The group Sim 1is a proper subgroup of Sim E . For consider

the doubly infinite matrix
H, = diag(H,H,... ,H,... ) ,
for any H € O(n) . Then H, acts on E by H,.x =y , where

Yinsi = hij xkn+j (k=0,1,...3 1,j=l,...,n) .
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Thus H, € Sim E but H, ¢ Sim . However, Sim is quite large enough
for our purposes. In particular, the action of Sim E on 2 leaves
both P and “F setwise invariant. Moreover, if P, Qe P are
&-isomorphic, then there exists £ ¢ Sim such that £.P = Q , and the
same applies to F and to & . In fact, the maps conv, vert and aff
are equivariant under the action of Sim.

In analogous fashion, we can construct a group Iso < Sim and

use this to define congruence in ® and F .

9. The similarity space of polytopes

We are interested in polytopes with regard to their metrical
symmetry. From this point of view, what matters is the shape of a
polytope, and not its size or its position in space. A theory of
symmetry for polytopes, therefore, must be a theory of similarity
classes of polytopes rather than of polytopes as individuals. It follows
that we should study the quotient space P/~ =®/Sim rather than ®
itself.

For reasons that we now try to explain, we give ®/n a
modified version of the quotient topology. Our aim is to ensure that
®/~ is a Hausdorff space, retaining as far as possible the natural
features of the Hausdorff metric topology on GD. The only neighbourhood
of the class @ of singleton subsets in /% is Y/ itself, since
any polytope is similar to ome that is arbitrarily small.

Accordingly, we consider the set (@' as the union of the set P° of
polytopes of dimension O and the set 63+ of polytopes of positive
dimension. Thus P =@ U®P°V (¥} . We topologise ® */~ by the
quotient topology, and attach 0 =P% and @ = {§} = {#}/v as two
singleton path~components. The resulting space & has three path-

components, and is called the similarity space of polytopes. It is

convenient to put @5+ =(P+/% . Thus @5+ is the similarity space of
polytopes of positive dimension.

One of the advantages of proceeding in this seemingly over-
pedantic way lies in the fact that every element of &Y includes
'normal' representatives, defined in §3.3 below.

We denote the similarity class of P e ® by $P , and the

congruence class of P by KP .



